Nanostructured Super-Black Optical Materials, Phase II

Completed Technology Project (2013 - 2015)

Project Introduction

Need: NASA faces challenges in imaging and characterizing faint astrophysical objects within the glare of brighter stellar sources. Achieving a very low background requires control of both scattered and diffracted light. Significance of the Innovation: Aligned arrays of carbon nanotubes have recently been recognized as having world-leading optical absorption, far above competing state of the art materials. The nanotube array's diffuse reflectance (10-7) was demonstrated at two orders of magnitude lower than commercially available low reflectance carbons (10-5). The integrated total reflectance 0.045%, bested the field of competing materials, which are typically >1% at optical wavelengths. However, these arrays were produced on silicon, so they have limited utility for aerospace applications. NanoLab identified the potential to grow these arrays on flexible substrates, and proposed a Phase I effort to explore their properties.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Nanolab, Inc	Lead Organization	Industry	Waltham, Massachusetts
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Nanostructured Super-Black Optical Materials

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions		
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)	3	
Technology Areas		
Target Destinations		

Small Business Innovation Research/Small Business Tech Transfer

Nanostructured Super-Black Optical Materials, Phase II

Completed Technology Project (2013 - 2015)

Primary U.S. Work Locations		
California	Massachusetts	

Project Transitions

0

July 2013: Project Start

July 2015: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137325)

Images

Project ImageNanostructured Super-Black Optical Materials
(https://techport.nasa.gov/image/132949)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Nanolab, Inc

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

David L Carnahan

Co-Investigator:

David Carnahan

Nanostructured Super-Black Optical Materials, Phase II

Completed Technology Project (2013 - 2015)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - └─ TX08.1 Remote Sensing Instruments/Sensors
 └─ TX08.1.3 Optical

Components

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

